Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Monit Assess ; 187(7): 424, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26065891

RESUMO

Anthropogenic forces widely influence the composition, configuration, and trend of land use and land cover (LULC) changes with potential implications for surface water quality. These changes have the likelihood of generating non-point source pollution with additional environmental implications for terrestrial and aquatic ecosystems. Monitoring the scope and trajectory of LULC change is pivotal for region-wide planning, tracking the sustainability of natural resources, and meeting the information needs of policy makers. A good comprehension of the dynamics of anthropogenic drivers (proximate and underlying) that influence such changes in LULC is important because any potential adverse change in LULC that may be inimical to sustainable water quality might be addressed at the anthropogenic driver level rather than the LULC change stage. Using a dense time stack of Landsat-5 Thematic Mapper images, a hydrologic water quality and socio-geospatial modeling framework, this study quantifies the role of anthropogenic drivers of LULC change on total suspended solids and total phosphorus concentrations in the Lower Chippewa River Watershed, Wisconsin, at three time steps-1990, 2000, and 2010. Results of the study demonstrated that proximate drivers of LULC change accounted for between 32 and 59% of the concentration and spatial distribution of total suspended solids, while the extent of phosphorus impairment attributed to the proximate drivers ranged between 31 and 42%.


Assuntos
Modelos Teóricos , Fósforo , Rios/química , Poluição da Água/estatística & dados numéricos , Qualidade da Água , Ecossistema , Monitoramento Ambiental , Humanos , Material Particulado , Imagens de Satélites , Urbanização/tendências , Wisconsin
2.
Sci Total Environ ; 409(20): 4387-405, 2011 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-21835439

RESUMO

Modeling the effects of past and current land use composition and climatic patterns on surface water quality provides valuable information for environmental and land planning. This study predicts the future impacts of urban land use and climate changes on surface water quality within Des Plaines River watershed, Illinois, between 2010 and 2030. Land Change Modeler (LCM) was used to characterize three future land use/planning scenarios. Each scenario encourages low density residential growth, normal urban growth, and commercial growth, respectively. Future climate patterns examined include the Intergovernmental Panel on Climate Change (IPCC) Special Report on Emission Scenario (SRES) B1 and A1B groups. The Soil and Water Assessment Tool (SWAT) was employed to estimate total suspended solids and phosphorus concentration generated at a 10 year interval. The predicted results indicate that for a large portion of the watershed, the concentration of total suspended solids (TSS) would be higher under B1 and A1B climate scenarios during late winter and early spring compared to the same period in 2010; while the summer period largely demonstrates a reverse trend. Model results further suggest that by 2020, phosphorus concentration would be higher during the summer under B1 climate scenario compared to 2010, and is expected to wane by 2030. The projected phosphorus concentrations during the late winter and early spring periods vary across climate and land use scenarios. The analysis also denotes that middle and high density residential development can reduce excess TSS concentration, while the establishment of dense commercial and industrial development might help ameliorate high phosphorus levels. The combined land use and climate change analysis revealed land use development schemes that can be adopted to mitigate potential future water quality impairment. This research provides important insights into possible adverse consequences on surface water quality and resources under certain climate change and land use scenarios.


Assuntos
Mudança Climática , Simulação por Computador , Rios/química , Urbanização/tendências , Poluentes Químicos da Água/análise , Abastecimento de Água/normas , Chicago
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...